Rapid Temporal Modulation of Synchrony by Competition in Cortical Interneuron Networks
نویسندگان
چکیده
The synchrony of neurons in extrastriate visual cortex is modulated by selective attention even when there are only small changes in firing rate (Fries, Reynolds, Rorie, & Desimone, 2001). We used Hodgkin-Huxley type models of cortical neurons to investigate the mechanism by which the degree of synchrony can be modulated independently of changes in firing rates. The synchrony of local networks of model cortical interneurons interacting through GABA(A) synapses was modulated on a fast timescale by selectively activating a fraction of the interneurons. The activated interneurons became rapidly synchronized and suppressed the activity of the other neurons in the network but only if the network was in a restricted range of balanced synaptic background activity. During stronger background activity, the network did not synchronize, and for weaker background activity, the network synchronized but did not return to an asynchronous state after synchronizing. The inhibitory output of the network blocked the activity of pyramidal neurons during asynchronous network activity, and during synchronous network activity, it enhanced the impact of the stimulus-related activity of pyramidal cells on receiving cortical areas (Salinas & Sejnowski, 2001). Synchrony by competition provides a mechanism for controlling synchrony with minor alterations in rate, which could be useful for information processing. Because traditional methods such as cross-correlation and the spike field coherence require several hundred milliseconds of recordings and cannot measure rapid changes in the degree of synchrony, we introduced a new method to detect rapid changes in the degree of coincidence and precision of spike timing.
منابع مشابه
Stimulus Competition by Inhibitory Interference
When two stimuli are present in the receptive field of a V4 neuron, the firing rate response is between the weakest and strongest response elicited by each of the stimuli when presented alone (Reynolds, Chelazzi, & Desimone, 1999). When attention is directed toward the stimulus eliciting the strongest response (the preferred stimulus), the response to the pair is increased, whereas the response...
متن کاملAttentional Modulation of Synchrony in Cortical Networks
Attention can modulate the synchrony of neurons in extrastriate cortex without changing their mean activity. We investigated using two different model networks how cortical neurons synchronize when a stimulus was attended and how they desynchronize when attention was switched off. Network 1 consisted of interneurons that were coupled by fast GABAergic synapses and electrical gap junctions. The ...
متن کاملProperties of precise firing synchrony between synaptically coupled cortical interneurons depend on their mode of coupling.
Precise spike synchrony has been widely reported in the central nervous system, but its functional role in encoding, processing, and transmitting information is yet unresolved. Of particular interest is firing synchrony between inhibitory cortical interneurons, thought to drive various cortical rhythms such as gamma oscillations, the hallmark of cognitive states. Precise synchrony can arise bet...
متن کاملInhibitory synchrony as a mechanism for attentional gain modulation q
Recordings from area V4 of monkeys have revealed that when the focus of attention is on a visual stimulus within the receptive field of a cortical neuron, two distinct changes can occur: The firing rate of the neuron can change and there can be an increase in the coherence between spikes and the local field potential (LFP) in the gamma-frequency range (30–50 Hz). The hypothesis explored here is...
متن کاملInhibitory synchrony as a mechanism for attentional gain modulation q Paul
Recordings from area V4 of monkeys have revealed that when the focus of attention is on a visual stimulus within the receptive field of a cortical neuron, two distinct changes can occur: The firing rate of the neuron can change and there can be an increase in the coherence between spikes and the local field potential (LFP) in the gamma-frequency range (30–50 Hz). The hypothesis explored here is...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Neural computation
دوره 16 2 شماره
صفحات -
تاریخ انتشار 2004